
7 Forman D, Rider L, eds. Yorkshire Cancer Registry report 1996. Leeds: York-
shire Cancer Organisation, 1996.

8 Campbell AJ, Buchner DM. Unstable disability and the fluctuations of
frailty. Age Ageing 1997;26:315-8.

9 Balducci L, Mowrey K, Parker M. Pharmacology of antineoplastic agents
in older patients. In: Balducci L, Lyman GH, Ershler WB, eds. Geriatric
oncology. Philadelphia: JB Lippincott Co, 1992:169-80.

10 Shank WA, Jr., Balducci L. Recombinant hemopoietic growth factors:
comparative hemopoietic response in younger and older subjects. J Am
Geriatr Soc 1992;40:151-4.

11 Begg CB, Carbone PP. Clinical trials and drug toxicity in the elderly. The
experience of the Eastern Cooperative Oncology Group. Cancer
1983;52:1986-92.

12 Evans WK, Radwi A, Tomiak E, Logan DM, Martins H, Stewart DJ, et al.
Oral etoposide and carboplatin. Effective therapy for elderly patients with
small cell lung cancer. Am J Clin Oncol 1995;18:149-55.

13 Morandi U, Stefani A, Golinelli M, Ruggiero C, Brandi L, Chiapponi A, et
al. Results of surgical resection in patients over the age of 70 years with
non small-cell lung cancer. Eur J Cardiothorac Surg 1997;11:432-9.

14 Bufalari A, Ferri M, Cao P, Cirocchi R, Bisacci R, Moggi L. Surgical care
in octogenarians. Br J Surg 1996;83:1783-7.

15 Farrow DC, Hunt WC, Samet JM. Temporal and regional variability in the
surgical treatment of cancer among older people. J Am Geriatr Soc
1996;44:559-64.

16 Pignon T, Gregor A, Schaake KC, Roussel A, Van Glabbeke M, Scalliet P.
Age has no impact on acute and late toxicity of curative thoracic
radiotherapy. Radiother Oncol 1998;46:239-48.

17 Pignon T, Horiot JC, Bolla M, van Poppel H, Bartelink H, Roelofsen F, et
al. Age is not a limiting factor for radical radiotherapy in pelvic
malignancies. Radiother Oncol 1997;42:107-20.

18 Rostom AY, Pradhan DG, White WF. Once weekly irradiation in breast
cancer. Int J Radiat Oncol Biol Phys 1987;13:551-5.

19 Olmi P, Ausili-Cefaro G. Radiotherapy in the elderly: a multicentric pro-
spective study on 2060 patients referred to 37 Italian radiation therapy
centers. Rays 1997;22:53-6.

20 Robertson JF, Todd JH, Ellis IO, Elston CW, Blamey RW. Comparison of
mastectomy with tamoxifen for treating elderly patients with operable
breast cancer. BMJ 1988;297:511-4.

21 Balducci L, Extermann M, Fentiman I, Monfardini S, Perrone F. Should
adjuvant chemotherapy be used to treat breast cancer in elderly patients
(>70 years of age)? Eur J Cancer 1997;33:1720-4.

22 Cleary JF, Carbone PP. Palliative medicine in the elderly. Cancer
1997;80:1335-47.

23 Fletcher A. Screening for cancer of the cervix in elderly women. Lancet
1990;335:97-9.

24 Age Concern. Not at my age: why the present breast screening system is failing
women aged 65 or over. London: Age Concern England, 1996.

25 Van Dijck JA, Verbeek AL, Beex LV, Hendriks JH, Holland R, Mravunac
M, et al. Mammographic screening after the age of 65 years: evidence for
a reduction in breast cancer mortality. Int J Cancer 1996;66:727-31.

26 Haigney E, Morgan R, King D, Spencer B. Breast examinations in older
women: questionnaire survey of attitudes of patients and doctors. BMJ
1997;315:1058-9.

27 Yellen SB, Cella DF, Leslie WT. Age and clinical decision making in
oncology patients. J Natl Cancer Inst 1994;86:1766-70.

28 Mead GE, Pendleton N, Pendleton DE, Horan MA, Bent N, Rabbit P. High
technology medical interventions: what do older people want? J Am
Geriatr Soc 1997;45:1409-11.

29 Given CW, Given BA, Stommel M. The impact of age, treatment, and
symptoms on the physical and mental health of cancer patients. A longi-
tudinal perspective. Cancer 1994;74:2128-38.

30 Weinrich SP, Weinrich MC. Cancer knowledge among elderly individuals.
Cancer Nurs 1986;9:301-7.

31 Wetle T. Age as a risk factor for inadequate treatment. JAMA 1987;258:
516.

32 Newcomb PA, Carbone PP. Cancer treatment and age: patient
perspectives. J Natl Cancer Inst 1993;85:1580-4.

33 Pearlman RA, Uhlmann RF. Quality of life in chronic diseases:
perceptions of elderly patients. J Gerontol 1988;43:M25-30.

34 Hazzard WR, Woolard N, Regenstreif DI. Integrating geriatrics into the
subspecialties of internal medicine: the Hartford Foundation/American
Geriatrics Society/Wake Forest University Bowman Gray School of
Medicine initiative. J Am Geriatr Soc 1997;45:638-40.

35 Sainsbury R, Rider L, Smith A, MacAdam A. Does it matter where you
live? Treatment variation for breast cancer in Yorkshire. The Yorkshire
Breast Cancer Group. Br J Cancer 1995;71:1275-8.

36 Calman K, Hine D. A policy framework for commissioning cancer services. A
report by the Expert Advisory Group on Cancer to the Chief Medical Officers of
England and Wales. 1995. London: Department of Health, 1995.

37 Selby P, Gillis C, Haward R. Benefits from specialised cancer care. Lancet
1996;348:313-8.

38 Monfardini S. What do we know on variables influencing clinical
decision-making in elderly cancer patients? Eur J Cancer 1996;32A:12-4.

39 Fentiman IS. Are the elderly receiving appropriate treatment for cancer?
Ann Oncol 1996;7:657-8.

40 Coebergh JW. Significant trends in cancer in the elderly. Eur J Cancer
1996;32A:569-71.

(Accepted 6 April 1999)

Methods in health services research
Interpreting the evidence: choosing between randomised
and non-randomised studies
Martin McKee, Annie Britton, Nick Black, Klim McPherson, Colin Sanderson, Chris Bain

Evaluations of healthcare interventions can either
randomise subjects to comparison groups, or not. In
both designs there are potential threats to validity,
which can be external (the extent to which they are
generalisable to all potential recipients) or internal
(whether differences in observed effects can be
attributed to differences in the intervention). Ran-
domisation should ensure that comparison groups of
sufficient size differ only in their exposure to the
intervention concerned. However, some investigators
have argued that randomised controlled trials (RCTs)
tend to exclude, consciously or otherwise, some types
of patient to whom results will subsequently be
applied. Furthermore, in unblinded trials the outcome
of treatment may be influenced by practitioners’
and patients’ preferences for one or other interven-
tion. Though non-randomised studies are less
selective in terms of recruitment, they are subject to
selection bias in allocation if treatment is related to
initial prognosis.

These issues have led to extensive debate, although
empirical evidence is limited. This paper is a brief sum-
mary of a more detailed review1 of the impact of these
potential threats.
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Summary points

Treatment effects obtained from randomised and
non-randomised studies may differ, but one
method does not give a consistently greater effect
than the other

Treatment effects measured in each type of study
best approximate when the exclusion criteria are
the same and where potential prognostic factors
are well understood and controlled for in the
non-randomised studies

Subjects excluded from randomised controlled
trials tend to have a worse prognosis than those
included, and this limits generalisability

Subjects participating in randomised controlled
trials evaluating treatment of existing conditions
tend to be less affluent, educated, and healthy
than those who do not; the opposite is true for
trials of preventive interventions
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Nature of the evidence
The review focused on threats to internal and external
validity of evaluations of effectiveness and on the
strategies proposed to overcome them (table). Various
factors act through their effect on the distribution of
the potential to benefit among different groups. This
can be illustrated schematically (fig 1). The reference
population is defined by an envelope, represented here
as a triangle but potentially taking many shapes. At
some point, a threshold is reached, below which the
overall risks outweigh the benefits. As patients are
excluded or do not participate, the study population
becomes a progressively smaller subset of the
reference population, in principle increasing the scope
for selection bias and raising the question of whether it
is valid to apply the results obtained to the reference
population.

We used systematic reviews to explore the potential
and actual importance of factors that lead to selective
recruitment, examining four questions:
x Do non-randomised studies give systematically
different measurements of treatment effect from
RCTs?
x Are there systematic differences between the
subjects included in or excluded from studies, and do
these influence the measured treatment effect?
x To what extent is it possible to overcome known or
unknown baseline differences between groups that are
not allocated randomly?
x How important are patients’ preferences for an
intervention and, if patients are randomised to a treat-
ment they would not choose, how does this affect their
outcome?

Findings
Comparing results of RCTs and non-randomised
studies
Eighteen papers were identified where a single
intervention was evaluated by both methods (a full list

is available on the BMJ ’s website). A review was
published just after our original report; on the basis of
eight comparisons it found that, on average, non-
randomised studies overestimate effect size.2 In
contrast, of the seven studies in our review where the
two methods detected effects in the same direction, in
three the effect size was greater in the randomised trial
and in four it was greater in the non-randomised study.
The key finding in our study is that neither method
consistently gave larger estimates of treatment effect.

In addition to chance, there are several potential
explanations for different measurements of treatment
effects. The overall impact will reflect the relative
importance of each issue in a particular case. A
randomised controlled trial may produce a greater
effect if the patients enrolled in it receive higher quality
care or are selected so that they have greater capacity
to benefit than patients in non-randomised studies. But
it may produce a lower estimate of treatment effect for
several reasons:
x In non-randomised studies, patients tend to be allo-
cated to treatments that are correctly considered most
appropriate for their individual circumstances;
x Exclusions from a RCT create a sample with less
capacity to benefit than in a non-randomised study;
x An unblinded RCT fails to capture patients with
strong preferences for a particular treatment who show
an enhanced response to treatment;
x Non-randomised studies of preventive interven-
tions include disproportionate numbers of individuals
who, by virtue of their health related behaviour, have
greater capacity to benefit;
x Publication bias leads to negative results being less
likely to be published from non-randomised studies
than from RCTs.

The limited evidence indicates that the results of
non-randomised studies best approximate to results of
RCTs when both use the same exclusion criteria and
when potential prognostic factors are well understood,
measured, and appropriately controlled in non-
randomised studies.3

In summary, the results of RCTs and non-
randomised studies of similar patients may not, after
adjustment, be substantially different in relative effect
size. Any variations are often no greater than those
between different RCTs or among non-randomised
studies. Differences in effect sizes could be due to
chance or differences in populations studied, timing, or
nature of the intervention.

Exclusions
Randomised controlled trials vary widely in their
inclusiveness. Medical reasons cited for exclusion from
trials include a high risk of adverse effects and belief

Threats to validity of evaluative research and possible solutions

Type of validity Threatening factor Proposed solution

Internal Allocation bias (risk of confounding) Randomisation

Risk adjustment and subgroup analysis (analysis)

Patient preference Preference arms or adjustment for preference (design)

External Exclusions (eligibility criteria) Expand inclusion criteria

Non-participation (centres/practitioners) Multicentre, pragmatic design

Not invited (practitioner preference or administrative oversight) Encourage practitioners to invite all eligible patients

Non-participation (patients) Less rigorous consent procedures

Subjects (s)

Ineligible (e)

Intervention BIntervention A

Potential to
benefit

Centre/doctor non-participation (d)
(not invited or centre/practitioner
preference)

Not invited to participate (l)
(administrative oversight or
practitioner preference)

Patient non-participation (p)
(patient has preference for specified
treatment or aversion to research)

Fig 1 Differences in inclusion and participation. Shaded areas
represent the study population
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that benefit, or lack of it, has already been established
for some groups.

Scientific reasons include greater precision in
estimating treatment effects by having a homogeneous
sample,4 and reduced risk of bias by excluding
individuals most likely to be lost to follow up.5 In addi-
tion, many RCTs have blanket exclusions,6 the reasons
for which are often unstated, of categories of patients
such as the elderly, women, and ethnic minorities.

Few studies have examined differences in prognos-
tic factors between included and excluded patients, but
some have used clinical databases to examine this.7 8

The patients included in such databases tended to have
a poorer prognosis than those in trials: in one study, a
subset selected to meet eligibility criteria of RCTs pro-
duced treatment effects of similar size to those
obtained from RCTs.3

Participation
Evaluative research is undertaken predominantly in
university or teaching centres, but non-randomised
studies are more likely than RCTs to include
non-teaching centres, and criteria for participation in
RCTs may include the achievement of a specified level
of clinical outcome. The available evidence suggests
that this may exaggerate the measured treatment
effect.9

Most evaluative studies fail to document adequately
the characteristics of eligible patients who do not par-
ticipate. The effect of non-participation differs between
RCTs that evaluate interventions designed to treat an
existing condition and those directed at preventing
disease (fig 2).10 Participants in the former tend to be
less affluent, less educated, and more severely ill than
eligible patients who do not participate.11 In contrast,
participants in RCTs evaluating preventive interven-
tions tend to be more affluent, better educated, and
more likely to have adopted a healthy lifestyle than
patients who decline.12 On the basis of the evidence
from the comparisons discussed earlier, it is plausible
that low participation in RCTs of treatment may exag-
gerate treatment effects by including more skilful prac-
titioners and subjects with a greater capacity to benefit,
while RCTs of prevention may underestimate effects as
participants have selectively less capacity to benefit.

Impact of patients’ preferences
There is little empirical research on the impact on out-
come of patients’ preferences. The four studies that
attempted to measure preference effects either were
small or have yet to report full results.13-16 In theory,
preference could have an important impact on results

of RCTs, especially where the true effect is small. Such
effects could account for some observed differences
between results of RCTs and non-randomised studies.
There are methods that may detect preference effects
reliably; though these may contribute to understand-
ing this phenomenon, none provides a complete
answer.17 This is mainly because randomisation
between preferring a treatment and not is impossible,
and confounding may bias any observed comparison.

Adjustment for baseline differences in
non-randomised studies
Despite the evidence that the results of RCTs and non-
randomised studies are often similar, differences in
baseline prognostic factors clearly can be important.
Absence of randomisation can produce groups that
differ in important ways, and it is necessary to consider
whether it is possible to adjust for such differences.
Adjustment for imbalance in baseline prognostic
factors between arms of non-randomised studies com-
monly changes the size of the measured treatment
effect, but such changes are often small and
inconsistent.1

Overall, the limited evidence suggests that differ-
ences in the populations studied by RCTs and
non-randomised studies are likely to be of at least as
much importance in explaining any differences and
that the two methods should be compared only after
patients not meeting eligibility criteria for the RCT are
excluded.

Recommendations
A large, inclusive, fully blinded RCT incorporating
appropriate subgroup analysis is likely to provide the
best possible evidence of effectiveness, but there will
always be circumstances in which randomisation, espe-
cially on an inclusive basis, is unethical or impractical.18

In circumstances where there are genuine reasons for
not randomising,19 non-randomised studies can pro-
vide useful evidence. In such studies, adjustment for
baseline imbalances should always be attempted, as
rigorously and extensively as possible, and the
procedures should be reported explicitly to help read-
ers’ evaluations. However, adjustment cannot be relied
on to approximate the prognostic balance of randomi-
sation, given unknown or unmeasurable confounding.

Investigators conducting evaluative research (using
any design) must improve the quality of reporting.
Authors should define the population to whom they
expect their results to be applied; what has been done
to ensure that the study population is representative of
this wider population, and any evidence of how it
differs; whether centres that participated differ from
those that declined; and the numbers and characteris-
tics of patients eligible to be included who either were
not invited to do so or were invited and declined.

The findings of such studies have implications for
the way in which evidence is interpreted. When faced
with data from any source, whether randomisation has
been used or not, it is important first to pursue alterna-
tive (non-causal) explanations thoroughly and exam-
ine the possible influence of chance, bias, and
confounding, perhaps using sensitivity analyses where
feasible.

Intervention BIntervention A

Trials of treatment Trials of prevention

Potential
to benefit

Intervention BIntervention A

pp

pp

Fig 2 Effect of differences in participation in trials of prevention and
of treatment. p=eligible non-participants; shaded areas represent the
study population

Education and debate

314 BMJ VOLUME 319 31 JULY 1999 www.bmj.com



Where only non-randomised data are available, the
potential for allocation bias should be considered and
any attempts at risk adjustment should be assessed.

Where only randomised trials are found, prefer-
ence effects should also be considered. To obtain an
uncontaminated estimate of the physiological effect of
a treatment, RCTs should be blind to everyone
involved, but for many interventions this will be impos-
sible. Also, the advantages of narrowing inclusion crite-
ria to ensure high participation in RCTs should be
balanced by the potential need for subgroup analysis. It
should not be assumed that a summary result applies
to all potential patients.

When both randomised and non-randomised
studies have been conducted it is important to ascertain
whether estimates of treatment effect are consistent for
patients at similar risk across studies. If so, it may be
reasonable to accept the results of the less exclusive
non-randomised studies. Differences in results cannot be
assumed to be solely due to the presence or lack
of randomisation—differences in study populations,
characteristics of the intervention, and the effects of
patients’ preferences may also affect the results.

Whichever design is used, generalisability needs
attention. One approach involves examining the
relation between reduction in relative risk (as a
measure of effect size) against the percentage of events
in the control arm (as an indirect measure of inclusive-
ness)20; this is sometimes referred to as metaregres-
sion.21 Where sufficient data are available from RCTs, it
may be possible to identify separate measures of
benefit and harm. If, as has been shown for giving anti-
coagulants to prevent stroke, the percentage reduction
in relative risk remains constant at all levels of severity
and the increase in absolute risk of an adverse effect
remains constant, the reduction in absolute risk for a
given patient can then be estimated.22

In conclusion, RCTs and non-randomised studies
can provide complementary evidence—but it is impor-
tant that clinicians using this evidence are aware of the
strengths and weaknesses of each method.

This article is adapted from Health Services Research Methods:
A Guide to Best Practice, edited by Nick Black, John Brazier, Ray
Fitzpatrick, and Barnaby Reeves, published by BMJ Books in
1998.
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the codes of the active and inert drugs.3 Furthermore,
treatment allocation can be guessed if blocking is used.
For instance if patients are randomised in a series of
blocks of four—that is, for every four patients
randomised two will receive one treatment and two will
receive the other—an investigator who remembers the
treatments the previous three patients received will be
able to predict the treatment for the fourth.

While much of the evidence on subverting
randomisation is anecdotal, a recent review found that
randomisation has been compromised in several
controlled trials.2 This review showed that trials which
did not adequately conceal randomisation from the
investigators demonstrated, on average, a 41% increase
in effect for the active treatment compared with an
adequately concealed trial.2 Indeed, in a current multi-
centre randomised trial of a surgical procedure in the
United Kingdom the median age of patients for the
experimental treatment was found to be significantly
lower for three groups of clinicians when an envelope
system was used. This age imbalance disappeared
when better concealment measures were introduced.4

Owing to the problems of using envelopes it is
methodologically more sound to undertake “distance”

randomisation (although in some instances sealed
envelopes may be the only practical means of
randomisation). Distance randomisation usually
involves the investigator, on recruiting a patient,
telephoning a central randomisation service which
notes basic patient details and then issues a treatment
allocation. Indeed, distance randomisation can now be
performed over the internet. Such a system is being
used, alongside telephone randomisation, in the Medi-
cal Research Council’s growth restricted intervention
trial (GRIT). Distance randomisation is much less likely
to be compromised than an envelope system.

Thus, to avoid bias it is important that randomisa-
tion is well concealed. Recent evidence has questioned
the rigor of using local randomisation. Randomisation
should be distant and separate from clinicians
conducting the trial.

1 Pocock SJ. Clinical trials:a practical approach. Chichester: John Wiley, 1983.
2 Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias:

dimensions of methodological quality associated with estimates of effects
in controlled trials. JAMA 1995;273:408-12.

3 Schulz KF. Subverting randomisation in controlled trials. JAMA
1995;274:1456-8.

4 Kennedy A, Grant A. Subversion of allocation in a randomised controlled
trial. Control Clin Trials 1997;18(suppl 3):77-8S.

Methods in health service research
Evaluation of health interventions at area and
organisation level
Obioha C Ukoumunne, Martin C Gulliford, Susan Chinn, Jonathan A C Sterne, Peter G J Burney,
Allan Donner

Healthcare interventions are often implemented at the
level of the organisation or geographical area rather
than at the level of the individual patient or healthy
subject. For example, screening programmes are deliv-
ered to residents of a particular area; health promotion
interventions might be delivered to towns or schools;
general practitioners deliver services to general practice
populations; hospital specialists deliver health care to
clinic populations. Interventions at area or organisation
level are delivered to clusters of individuals.

The evaluation of interventions based in an area or
organisation may require the allocation of clusters of
individuals to different intervention groups (see box
1).1 2 Cluster based evaluations present special prob-
lems both in design and analysis.3 Often only a small
number of organisational units of large size are
available for study, and the investigator needs to
consider the most effective way of designing a study
with this constraint. Outcomes may be evaluated
either at cluster level or at individual level (table).4

Often cluster level interventions are aimed at
modifying the outcomes of the individuals within clus-
ters, and it will then be important to recognise that
outcomes for individuals within the same organisation
may tend to be more similar than for individuals in dif-
ferent organisational clusters (see box 2). This depend-
ence between individuals in the same cluster has
important implications for the design and analysis of
organisation based studies.2 This paper addresses these
issues.

Nature of the evidence
We retrieved relevant literature using computer
searches of the Medline, BIDS (Bath Information and

Summary points

Health interventions are often implemented at
the levels of health service organisational unit or
of geographical or administrative area

The unit of intervention is then a cluster of
individual patients or healthy subjects

Evaluation of cluster level interventions may be
difficult because only a few units of large size may
be available for study, evaluation may be at either
individual or cluster level, and individuals’
responses may be correlated within clusters

At the design stage, it is important to randomise
clusters whenever possble, adapt sample size
calculations to allow for clustering of responses,
and choose between cohort and repeated cross
sectional designs

Methods chosen for analysis of individual data
should take into account the correlation of
individual responses within clusters
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Data Services), and ERIC (Education Resources Infor-
mation Centre) databases and hand searches of
relevant journals. The papers retrieved included theo-
retical statistical studies and studies that applied these
methods. Much of the relevant work has been done on
community intervention studies in coronary heart dis-
ease prevention. We retrieved the content of the
papers, made qualitative judgments about the validity
of different approaches, and synthesised the best
evidence into methodological recommendations.

Findings
We identified 10 key considerations for evaluating
organisation level interventions.

(1) Recognise the cluster as the unit of intervention
or allocation
Healthcare evaluations often fail to recognise, or use
correctly, the different levels of intervention which may
be used for allocation and analysis.5 Failure to
distinguish individual level from cluster level interven-
tion or analysis can result in studies that are
inappropriately designed or give incorrect results.3

(2) Justify the use of the cluster as the unit of
intervention or allocation
For a fixed number of participants, studies in which
clusters are randomised to groups are not as powerful
as traditional clinical trials in which individual patients

are randomised.2 The decision to allocate at organis-
ation level should therefore be justified on theoretical,
practical, or economic grounds (box 1).

(3) Include enough clusters
Evaluation of an intervention that is implemented in a
single cluster will not usually give generalisable results.
For example, a study evaluating a new way of organis-
ing care at one diabetic clinic would be an audit study
which may not be generalisable. It would be better to
compare control and intervention clinics, but studies
with only one clinic per group would be of little value,
since the effect of intervention is completely con-
founded with other differences between the two clinics.
Studies with only a few (fewer than four) clusters per
group should generally be avoided as the sample size
will be too small to allow a valid statistical analysis with
appreciable chance of detecting an intervention effect.
Studies with as few as six clusters per group have been
used to show effects from cluster based interventions,6

but larger numbers of clusters will often be needed,
particularly when relevant intervention effects are
small.

(4) Randomise clusters wherever possible
Random allocation has not been used as often as it
should in the evaluation of interventions at the level of
area or organisation. Randomisation should be used to
avoid bias in the estimate of intervention effect as a
result of confounding with known or unknown factors.
Sometimes the investigator will not be able to control
the assignment of clusters—for instance, when evaluat-
ing an existing service,7 but because of the risk of bias,
randomised designs should always be preferred. If ran-
domisation is not feasible, then the chosen study
design should allow for potential sources of bias.8 Non-
randomised studies should include intervention and
control groups with observations made before and
after the intervention. If only a single group can be
studied, observations should be made on several occa-
sions both before and after the intervention.8

(5) Allow for clustering when estimating the
required sample size
When observations made at the individual level are
used to evaluate interventions at the cluster level,
standard formulas for sample size will not be
appropriate for obtaining the total number of
participants required. This is because they assume that
the responses of individuals within clusters are
independent (box 2).2 9–11 Standard sample size formu-
las underestimate the number of participants required
because they allow for variation within clusters but not
between clusters.

Comparison of levels of intervention and levels of evaluation (adapted fromMcKinlay4)

Level of evaluation

Level of intervention

Individual Area or organisation

Individual Clinical trial—for example, does treating multiple sclerosis patients
with interferon beta reduce their morbidity from the condition?

Area or organisation based evaluation—for example, does
providing GPs with guidelines on diabetes management
improve blood glucose control in their patients? Does
providing a “baby friendly” environment in hospital increase
mothers’ success at breast feeding?

Area or organisation Area or organisation based evaluation—for example, do
smoking control policies increase the proportion of smoke free
workplaces? Do fundholding general practices develop better
practice facilities than non-fundholders?

Box 1: Reasons for carrying out evaluations at
cluster level
• Public health and healthcare programmes are
generally implemented at organisation rather than
individual level, so cluster level studies are more
appropriate for assessing the effectiveness of such
programmes
• It may not be appropriate, or possible in practice, to
randomise individuals to intervention groups since all
individuals within a general practice or clinic may be
treated in the same way
• “Contamination” may sometimes be minimised
through allocation of appropriate organisational
clusters to intervention and control groups. For
example, individuals in an intervention group might
communicate a health promotion message to control
individuals in the same cluster. This might be
minimised by randomising whole towns to different
interventions
• Studies in which entire clusters are allocated to
groups may sometimes be more cost effective than
individual level allocation, if locating and randomising
individuals is relatively costly
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To allow for the correlation between subjects, the
required standard sample size derived from formulas
for individually randomised trials should be multiplied
by a quantity known as the design effect or variance
inflation factor.2 9 This will give a cluster level
evaluation with the same power to detect a given inter-
vention effect as a study with individual allocation. The
design effect is estimated as

Deff=1+(n0−1)ñ
where Deff is the design effect, n0 is the average number
of individuals per cluster and ñ is the intraclass correla-
tion coefficient for the outcome of interest.

The intraclass correlation coefficient is the pro-
portion of the total variation in the outcome that is
between clusters; this measures the degree of similarity
or correlation between subjects within the same cluster.
The larger the intraclass correlation coefficient—that is,
the more the tendency for subjects within a cluster to
be similar—the greater the size of the design effect and
the larger the additional number of subjects required
in an organisation based evaluation, compared with an
individual based evaluation.

Sample size calculations require the intraclass cor-
relation coefficient to be known or estimated before the
study is carried out.12 If the intraclass coefficient is not
available, plausible values must be estimated. A range
of components of variance and intraclass correlations
is reported elsewhere.13 14

The number of clusters required for a study can be
estimated by dividing the total number of individuals
required by the average cluster size. When sampling of
individuals within clusters is feasible, the power of the
study may be increased either by increasing the
number of individuals within clusters or by increasing
the number of clusters. Increasing the number of clus-
ters will usually enhance the generalisability of the
study and will give greater flexibility at the time of
analysis,15 but the relative cost of increasing the
number of clusters in the study, rather than the
number of individuals within clusters, will also be an
important consideration.

(6) Consider the use of matching or stratification of
clusters where appropriate
Stratification entails assigning clusters to strata
classified according to cluster level prognostic factors.
Equal numbers of clusters are then allocated to each
intervention group from within each stratum. Some
stratification or matching will often be necessary in
area based or organisation based evaluations because
simple randomisation will not usually give balanced
intervention groups when a small number of clusters is
randomised. However, stratification is useful only when
the stratifying factor is fairly strongly related to the
outcome.

The simplest form of stratified design is the
matched pairs design, in which each stratum contains
just two clusters. We advise caution in the use of the
matched pairs design for two reasons. Firstly, the range
of analytical methods appropriate for the matched
design is more limited than for studies which use unre-
stricted allocation or stratified designs in which several
clusters are randomised to each intervention group
within strata.16 Secondly, when the number of clusters
is less than about 20, a matched analysis may have less
statistical power than an unmatched analysis.17 If
matching is thought to be essential at the design stage,
an unmatched cluster level analysis is worth consider-
ing.18 Stratified designs in which there are four or more
clusters per stratum do not suffer from the limitations
of the paired design.

(7) Consider different approaches to repeated
assessments in prospective evaluations
Two basic sampling designs may be used for follow up:
the cohort design, in which the same subjects from the
study clusters are used at each measurement occasion,
and the repeated cross sectional design, in which a
fresh sample of subjects is drawn from the clusters at
each measurement occasion.19 20 The cohort design is
more appropriate when the focus of the study is on the
effect of the programme at the level of the individual
subject. The repeated cross sectional design, on the
other hand, is more appropriate when the focus of
interest is a cluster level index of health such as disease
prevalence. The cohort design is potentially more
powerful than the repeated cross sectional design
because repeated observations on the same individuals
tend to be correlated over time and may be used to
reduce the variation of the estimated intervention
effect. However, the repeated cross sectional design is
more likely to give results that are representative of the
clusters at the later measurement occasions, particu-
larly for studies with long follow up.

(8) Allow for clustering at the time of analysis
Standard statistical methods are not appropriate for
the analysis of individual level data from organisation
based evaluations because they assume that the
responses of different subjects are independent.2

Standard methods may underestimate the standard
error of the intervention effect, resulting in confidence
intervals that are too narrow and P values that are too
small.

Outcomes can be compared between intervention
groups at the level of the cluster, applying standard sta-
tistical methods to the cluster means or proportions, or
at the level of the individual, using formulas that have

Box 2: Three reasons for correlation of
individual responses within area or
organisational clusters
• Healthy subjects or patients may have chosen the
social unit to which they belong. For example,
individuals may select their general practitioners on
the basis of characteristics such as age, sex, or ethnic
group. Individuals who choose the same social or
organisational unit might be expected to have
something in common
• Cluster level attributes may have a common
influence over all individuals in that cluster, thus
making them more similar. For example, outcomes of
surgery may vary systematically between surgeons, so
that outcomes for patients treated by one surgeon
tend to be more similar to each other than to those of
another surgeon
• Individuals may interact within the cluster, leading
to similarities between individuals for some health
related outcomes. This might occur, for example, when
individuals within a community respond to health
promotion messages communicated through news
media
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been adjusted to allow for the similarity between indi-
viduals.2

Individual level analyses allow for the similarity
between individuals within the same cluster, by
incorporating the design effect into conventional
standard error formulas that are used for hypothesis
testing and estimating confidence intervals.2 21 For
adjusted individual level analyses the intraclass
correlation coefficient can be estimated from the study
data in order to calculate the design effect. About 20-25
clusters are required to estimate the intraclass correla-
tion coefficient with a reasonable level of precision and
a cluster level analysis is to be preferred when there are
fewer clusters than this.

(9) Allow for confounding at both individual and
cluster levels
When confounding variables need to be controlled for
at individual level or the cluster level, regression meth-
ods for clustered data should be used. The method of
generalised estimating of equations treats the depend-
ence between individual observations as a nuisance
factor and provides estimates that are corrected for
clustering. Random effects models (multilevel models)
explicitly model the association between subjects in the
same cluster. These methods may be used to estimate
intervention effects, controlling for both individual
level and cluster level characteristics.22 23 Regression
methods for clustered data require a fairly large
number of clusters but may be used with clusters that
vary in size.

(10) Include estimates of intracluster correlation
and components of variance in published reports
To aid the planning of future studies, researchers
should publish estimates of the intracluster correlation
for key outcomes of interest, for different types of sub-
jects, and for different levels of geographical and
organisational clustering.12–14

Recommendations
Investigators will need to consider the circumstances of
their own evaluation and use discretion in applying
these guidelines to specific circumstances. Conducting
cluster based evaluations may present unusual difficul-
ties. The issue of informed consent needs careful con-
sideration.24 Interventions and data management
within clusters should be standardised, and the delivery
of the intervention should usually be monitored
through the collection of both qualitative and quantita-
tive information, which may help to interpret the out-
come of the study.

This article is adapted from Health Services Research Methods: A
Guide to Best Practice, edited by Nick Black, John Brazier, Ray
Fitzpatrick, and Barnaby Reeves, published by BMJ Books.
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Corrections and clarifications
Risk factors for human hantavirus infection:
Franco-Belgian collaborative case-control study during
1995-6 epidemic
In this paper by N S Crowcroft and colleagues (26
June, p 1737-8) the names of two authors were
transposed in the list of addresses. J-C Desenclos is
head of the infectious diseases unit at the Réseau
National de Santé Publique, Saint-Maurice, France;
and F Van Loock is an epidemiologist at the
Scientific Institute of Public Health (Louis Pasteur)
in Brussels, Belgium.

Annual general meeting of the BMA
In this letter by David Gullick (3 July, p 59) the
second sentence of the first paragraph was
misleading. It should have started: “It will be
proposed that our 4000-odd overseas members
(except those in the armed forces). . . .’’

Obituaries
Dr Gordon Cunningham Taylor (19 June, p 1702)
was incorrectly described as a lieutenant general in
the Royal Army Medical Corps. He was a
lieutenant colonel.

In the obituary of Dr Kevin Anthony Valiant (24
July, p 262), Dr Valiant’s surname was incorrectly
spelt.
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takes an interdisciplinary approach to stemming the
epidemic, building links with other international organi-
sations, non-governmental organisations, the private
sector, and the research community.

Communicating reality and vision
Much remains to be done to raise awareness and con-
cern about cancer in the developing world. The yawn-
ing gap between poor and rich countries persists, and
cheap effective technologies such as hepatitis B vaccine
are not applied. There is a pressing need to deal prag-
matically with today’s problems by setting realistic pri-
orities. Yet health professionals also have a responsibil-
ity to expand what is feasible. As Article 27 of the
Universal Declaration of Human Rights states, “Every-
one has the right . . . to share in scientific advancement
and its benefits.” This vision can be communicated
through persuasive and practical arguments for
placing cancer in developing countries squarely in
context—and firmly on the agenda.

I thank N Muñoz and R Sankaranarayan for discussions and
advice, and P Kleihues, DM Parkin, K Sikora, A Narinesingh, E

LeGresley, and Y Daikh for their comments. Special thanks go
to KJ Hughes.
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Methods in health service research
An introduction to bayesian methods in health technology
assessment
David J Spiegelhalter, Jonathan P Myles, David R Jones, Keith R Abrams

Bayes’s theorem arose from a posthumous publication
in 1763 by Thomas Bayes, a non-conformist minister
from Tunbridge Wells. Although it gives a simple and
uncontroversial result in probability theory, specific
uses of the theorem have been the subject of consider-
able controversy for more than two centuries. In recent
years a more balanced and pragmatic perspective has
emerged, and in this paper we review current thinking
on the value of the Bayesian approach to health tech-
nology assessment.

A concise definition of bayesian methods in health
technology assessment has not been established, but
we suggest the following: the explicit quantitative use of
external evidence in the design, monitoring, analysis,
interpretation, and reporting of a health technology
assessment. This approach acknowledges that judg-
ments about the benefits of a new technology will
rarely be based solely on the results of a single study
but should synthesise evidence from multiple
sources—for example, pilot studies, trials of similar
interventions, and even subjective judgments about the
generalisability of the study’s results.

A bayesian perspective leads to an approach to
clinical trials that is claimed to be more flexible and
ethical than traditional methods,1 and to elegant ways
of handling multiple substudies—for example, when
simultaneously estimating the effects of a treatment on
many subgroups.2 Proponents have also argued that a
bayesian approach allows conclusions to be provided
in a form that is most suitable for decisions specific to
patients and decisions affecting public policy.3

Many questions remain: notably, to what extent the
scientific community or regulatory authorities will
allow the explicit consideration of evidence that is not
totally derived from observed data. In this article we

Summary points

Bayesian methods interpret data from a study in
the light of external evidence and judgment, and
the form in which conclusions are drawn
contributes naturally to decision making

Prior plausibility of hypotheses is taken into
account, just as when interpreting the results of a
diagnostic test

Scepticism about large treatment effects can be
formally expressed and used in cautious
interpretation of results that seem “too good to be
true”

Multiple subanalyses can be brought together by
formally expressing a belief that their conclusions
should be broadly similar

Use of bayesian methods in health technology
assessment should be pursued cautiously;
guidelines, software, and critically evaluated case
studies are needed

Education and debate

This is the third
of four articles

MRC Biostatistics
Unit, Institute of
Public Health,
Cambridge
CB2 2SR
David J
Spiegelhalter,
senior statistician
Jonathan P Myles,
research assistant

Department of
Epidemiology and
Public Health,
University of
Leicester, Leicester
LE1 6TP
Keith R Abrams,
senior lecturer in
medical statistics
David R Jones,
professor of medical
statistics

Correspondence to:
Dr Spiegelhalter
david.
spiegelhalter@
mrc-bsu.cam.ac.uk
Series editor:
Nick Black

BMJ 1999;319:508–12

508 BMJ VOLUME 319 21 AUGUST 1999 www.bmj.com



outline the available literature, discuss the main
techniques that are being suggested, and provide some
recommendations for future work.

Nature of the evidence
A “bayesian” approach can be applied to many
scientific issues, and a search for this term in the Insti-
tute for Scientific Information’s database yielded nearly
4000 papers over the period 1990-8. About 200 of
these were relevant to health technology assessment.
Using these as a source for forward and backward
searches, and searching other databases (Embase and
Medline) and sources, we identified about 300 papers,
including about 30 reports of studies taking a fully
bayesian perspective. A considerable further number
of studies have taken a so called “empirical Bayes”
approach, which uses elements of bayesian modelling
without giving a bayesian interpretation to the conclu-
sions; these are further mentioned below.

The published studies are dispersed throughout
the literature and, apart from one recent collection of
papers,4 the only textbook which might be considered
to be on bayesian methods in health technology
assessment focuses on the confidence profile
approach.5 Published studies are mainly demonstra-
tions of the approach rather than complete assess-
ments, and though many articles advocate bayesian
methods, practical take-up seems low.

Findings
Philosophy of the bayesian approach
Bayes’s theorem is a formula that shows how existing
beliefs, formally expressed as probability distributions,
are modified by new information. Diagnostic testing is a
familiar situation to which the theorem can be applied; a
doctor’s prior belief about whether a patient has a
particular disease (based on knowledge of the preva-
lence of the disease in the community and the patient’s
symptoms) will be modified by the result of the test.6

The unknown piece of information may, however,
be a somewhat more intangible quantity than an indi-
vidual’s true diagnosis—for example, the average
survival benefit of drug A over drug B in a particular
group of patients. Such quantities are not directly
observable in any reasonably sized experiment and are
considered to be unknown variables. Just as the full
evaluation of a diagnostic test requires the prevalence
of the disease to be specified, a bayesian analyst is pre-
pared to make the bold step of specifying a probability
distribution expressing the relative plausibility for this
unknown quantity, before taking into account any evi-
dence from a study. This “prior” distribution can then
be combined with evidence from the study to form a
“posterior” (formally proportional to the product of
the prior and the likelihood function). The box shows
an example.

The posterior distribution provides probabilities of
events of clinical interest and so one could say, for
example, that under specified assumptions “the chance
is 15% that drug A improves average survival by at least
three months over drug B.” This type of statement is
impossible to make within the traditional statistical
framework, in which the interpretation of P values and
confidence intervals depends on rather convoluted

statements concerning the long run properties of
statistical procedures under null hypotheses.

The table briefly summarises some major distinc-
tions between the bayesian and the traditional

Bayes’s theorem after a randomised trial

Pocock and Spiegelhalter7 discuss a small trial of early thrombolytic
treatment in preventing deaths from myocardial infarction, which had
reported a remarkable 49% reduction in mortality.8 On the basis of both
published and unpublished large trials, they argued that if treatment were
provided two hours earlier “a 15-20% reduction in mortality is highly
plausible, while the extremes of no benefit and a 40% reduction are both
unlikely.” This opinion could be represented as a prior distribution as
shown in figure 1(a) , which expresses the relative plausibility arising from
this external evidence.

Figure 1(b) shows the “likelihood” for the true risk reduction arising from
the trial itself, which is simply proportional to the chance of observing the
data (23/148 deaths in controls v 13/163 deaths with active treatment) for
each hypothesised risk reduction. Bayes’s theorem states that the two
sources of evidence can be combined by multiplying the prior and
likelihood curves together and then making the total area under the
resulting curve be equal to l—this is the “posterior” distribution and is
shown in figure 1(c). The evidence in the likelihood has been pulled back
towards the prior opinion, thus formally representing the suspicion that the
trial results were “too good to be true.”

The resulting distribution provides an easily interpretable summary of
the total evidence, and posterior probabilities for hypotheses of interest can
then be read from the graph. For example, the most likely benefit is a
reduction in risk of around 24% (half that observed in the trial), the
posterior probability that the risk is reduced by at least 50% is only 5%, and
a 95% confidence interval is from 43% to 0% risk reduction. Subsequent
experience has reinforced the conclusion of this analysis that it is very
unlikely that home thrombolysis reduces mortality by 50%.

a) Prior distribution

b) Likelihood based on 23/148 v 13/163 deaths

-70 -60 -50 -40

% change in risk in using home treatment

-30 -10-20 +10

c) Posterior distribution

Fig 1 Prior (a), likelihood (b), and posterior (c) distributions arising
from reanalysis by Pocock and Spiegelhalter7 of the GREAT trial of
home thrombolysis.8 The prior distribution represents a summary of
evidence external to the trial, the likelihood expresses evidence from
the trial itself, and the posterior distribution pools these two sources
by multiplying the two curves together
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approach. The latter is sometimes termed “frequentist”
as it is based on the long run frequency properties of
statistical procedures. There are many papers summa-
rising the bayesian philosophy and its application to
randomised trials: Cornfield’s is a notable early
example,9 and other authors have argued for the
flexibility, coherence, and intuitiveness of the
approach.1–3 10 Several authors have highlighted how
the bayesian approach leads naturally into a formal
decision theoretical approach to randomised trials.11

Quantifying prior beliefs
The bayesian approach is most controversial when there
is no hard evidence for the prior distribution and we
have to rely on subjective judgment. This considerably
broadens the area of potential application, although the
reasonableness of the judgments will need to be
justified. The traditional terms prior and posterior may
also be misleading, giving the impression that the prior
has to be fixed before the evidence is examined. It is
more helpful to think of the prior as summarising all
external evidence about the quantity of interest—for
example, other published studies—which might arise
during or after the study that is being considered.

One source of a prior distribution is the pooled
subjective opinion of informed experts, which can be
elicited interactively by using computer programs12 or
questionnaire methods.13 Such opinions should rely on
extensive experience: for example, Peto and Baigent
state that “it is generally unrealistic to hope for large
treatment effects” but that “it might be reasonable to
hope that a new treatment for acute stroke or acute
myocardial infarction could reduce recurrent stroke or
death in hospital from 10% to 9% or 8% . . . but not to
hope that it could halve in-hospital mortality.”14 This
closely mimics the prior opinion used in the box above
to illustrate how extreme results based on small studies
should not be taken at face value. Another source of
prior opinions is, of course, meta-analyses of previous
similar studies.

One important use of a prior distribution is in
planning the sample size of a randomised trial. Instead
of using a single (possibly optimistic) alternative
hypothesis as the basis for the power calculation, the
prior distribution can be used to produce an “expected
power,” taking into account reasonable uncertainty
about the true treatment effect.13

There has been an increasing move towards “off
the shelf” priors—for example, those intended to
represent the opinions of an archetypal “sceptic” and
those of an “enthusiast”15: these can be used to
represent extreme opinions in sensitivity analyses and

in sequential monitoring of trials (see below). One
published example concerns the use of sceptical priors
in determining whether there is sufficient evidence for
a treatment to be generally recommended (box).

Applications in monitoring randomised trials
In the traditional frequentist approach, randomised
trials are designed to have a fixed chance (usually 5%) of
incorrectly rejecting the null hypothesis, and various
techniques have been developed for adjusting the
apparent significance level of a result to allow for the fact
that the data have been analysed more than once. The
bayesian approach sees no need for this and instead
monitors the trial on the basis of the current posterior
distribution, providing an updated summary of the
evidence about the treatment effect at the time of any
analysis. Several monitoring schemes have been
suggested, some of which are based on decision theory.11

The most frequently illustrated technique is simply
based on the “tail” areas of the posterior distribution—

Brief comparison of bayesian and frequentist methods in randomised trials

Issue Frequentist methods Bayesian methods

Prior information other than that in the study
being analysed

Informally used in design Used formally by specifying a prior probability distribution

Interpretation of the parameter of interest A fixed state of nature An unknown quantity which can have a probability distribution

Basic question “How likely is the data, given a particular value of
the parameter?”

“How likely is a particular value of the parameter given the
data?”

Presentation of results Likelihood functions, P values, confidence intervals Plots of posterior distributions of the parameter, calculation
of specific posterior probabilities of interest, and use of the
posterior distribution in formal decision analysis

Interim analyses P values and estimates adjusted for the number of
analyses

Inference not affected by the number or timing of interim
analyses

Interim predictions Conditional power analyses Predictive probability of getting a firm conclusion

Dealing with subsets in trials Adjusted P values (for example, Bonferroni) Subset effects shrunk towards zero by a “sceptical” prior

a) Sceptical prior equivalent to 33 deaths in each group

< equiv: 50.0%
= equiv: 41.4%
> equiv: 8.6%

b) Likelihood: based on observed hazard ratio 1.63 after 120 deaths

< equiv: 0.4%
= equiv: 19.7%
> equiv: 79.9%

c) Posterior distribution

Median survival (months) gained by new treatment

-2 0 2 4 6 8 10 12

< equiv: 1.6%
= equiv: 54.0%
> equiv: 44.4%

Fig 2 Prior, likelihood, and posterior distributions arising from Cancer
and Leukaemia Group B trial of standard radiotherapy versus additional
chemotherapy in advanced lung cancer.15 Dashed lines give boundaries
of range of clinical equivalence, taken to be 0 and 4 months median
improvement in survival. Numbers by each graph show probabilities of
lying below, within, and above the range of equivalence
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for example, stop the trial if the chance that the
treatment is more effective than control is greater than
99%.17 If desired, the probability of the treatment effect
being greater than some clinically important difference
may be used, or, in the case of equivalence studies, that
the treatment difference is less than, say, 10%.

A sceptical prior may be thought of as a handicap
that the trial data must overcome in order to provide
convincing evidence of benefit. In the light of early
positive results, the approach shows a degree of
conservatism which can be remarkably similar to that
of frequentist stopping rules.18 The use of sceptical pri-
ors has been described in a tutorial and in
meta-analyses,19 20 and a senior statistician with the US
Food and Drug Administration has said that he “would
like to see [sceptical priors] applied in more routine
fashion to provide insight into our decision making.”21

The table also considers predictions made at an
interim stage in a randomised trial. Whereas the
frequentist conditional power calculations are based
on a hypothesised value of the true treatment effect, a
bayesian approach can answer a crucial question: if we
continue the study, what is the chance we will get a
significant result?

Multiplicity—estimating the prior
We often wish simultaneously to carry out a set of
related analyses—for example, meta-analysis of of indi-
vidual trial results—allowing for between centre
variability in the analysis of a multicentre trial or
analysing subsets of cases in a single trial. We call these
subanalyses. The traditional frequentist approach tries
to maintain a constant probability of wrongly rejecting
the null hypothesis (type I error) by some adjustment—
for example, a Bonferroni method for multiple
comparisons.

The bayesian approach integrates subanalyses by
assuming that the unknown quantities (for example, the
treatment effects specific to subsets) have a common
prior distribution, with the important difference that this
prior distribution has unknown parameters that need to
be estimated. Such models are known as hierarchical
and can, in theory, have any number of levels, although
three is generally enough. Non-bayesian versions (multi-
level, random effects and random coefficient models)
use either likelihood or “empirical Bayes” approaches to
estimate the model parameters.

By assuming a common prior distribution for each
subanalysis we are expressing scepticism about large
differences in their outcomes, although the precise
degree of similarity is generally considered unknown
and estimated from the data—for example, by measur-
ing the between trial variability in a meta-analysis. Full
bayesian and empirical Bayes approaches can lead to
similar conservatism (box).22

Non-randomised studies and synthesis of evidence
Most authors have concentrated on the application of
bayesian methods when designing randomised trials
or pooling results from published trials, but a small
number of papers have considered applying these
methods to data collected from non-randomised stud-
ies. For example, in a paper analysing data from two
case-control studies (one being very small) and a
cohort study, the authors show the results of using dif-
ferent sources of information for the prior and
likelihood.24 Other authors have discussed the integra-
tion of evidence from several types of non-randomised
studies25 and the integration of findings from both ran-
domised and non-randomised studies within a
bayesian framework.26

Is a confirmatory trial necessary?

Parmar et al illustrate the use of a sceptical prior distribution in deciding
whether or not to perform a confirmatory randomised trial.16 They discuss a
Cancer and Leukaemia Group B trial of radiotherapy and chemotherapy
versus standard radiotherapy in patients with locally advanced stage III
non-small cell lung cancer. This trial showed an adjusted median
improvement in survival of 6.3 months (95% confidence interval 1.4 to 13.3
months) in favour of the new treatment, which has a two sided P value of
0.008. They give two reasons why this might not lead to an immediate
recommendation for radiotherapy and chemotherapy as standard
treatment. Firstly, the toxicity of chemotherapy might mean a minimum
worthwhile improvement is demanded; the authors suggest a figure of
around four months. Secondly, a natural scepticism exists about new cancer
treatments, derived from long experience of failed innovations.

These two aspects can be formalised within the bayesian framework.
Firstly, one can report the probability that the new treatment not only
provides a positive improvement but that this exceeds a minimum clinically
worthwhile improvement. Secondly, scepticism is expressed by a prior
distribution that is centred on zero improvement and shows a 5% chance
that the true improvement is greater than the alternative hypothesis in this
study—namely, that the true improvement is five months.

Figure 2 shows this sceptical prior distribution, which is equivalent
evidence to that of an “imaginary” trial in which 33 patients taking each
treatment died. The dashed vertical lines indicate the null hypothesis of no
improvement and the minimum clinically worthwhile improvement of four
months. Between these lie what can be termed the range of equivalence,
and the figure shows that the sceptical prior expresses a probability of 41%
that the true benefit lies in the range of equivalence and only 9% that the
new treatment is clinically superior.

The likelihood function shows the inferences to be made from the data
alone, assuming a “uniform” prior on the range of possible improvements;
Parmar et al call this an enthusiastic prior. The probability that the new
treatment is actually inferior is 0.4% (equivalent to the one sided P value of
0.008 ÷ 2.) The probability of clinical superiority is 80%, which might be
considered sufficient to change treatment policy.

The posterior distribution shows the impact of the sceptical prior, in that
the chance of clinical superiority is reduced to 44%, hardly sufficient to
change practice. In fact, Parmar et al report that the National Cancer
Institute intergroup trial investigators were unconvinced by the Cancer and
Leukaemia Group B trial due to their previous negative experience, and so
carried out a further study. They found a significant median improvement,
but of only 2.4 months, suggesting that the sceptical approach might have
given a more reasonable estimate.

Performance status: 0-1
Performance status: 2-3
Anaplasia grade: 1-2
Anaplasia grade: 3-4
No measurable disease
Measurable disease
Symptomatic
Not symptomatic
Age <70 years
Age >70 years
Male
Female

-1.5 1.5 2.0-0.5 0.5-1.0 1.00
Standardised treatment effect

Traditional estimates
Bayesian estimates

Fig 3 Traditional and bayesian estimates of standardised treatment
effects in a randomised trial of treatments for cancer. The bayesian
estimates are pulled towards the overall treatment effect by a degree
determined by the empirical heterogeneity of the subset results
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Decision making
Another important feature of a bayesian approach is
the way in which the resulting posterior probability
distribution can be combined with quantitative
measures of utility as part of a formal decision analysis.
As with the elicitation of beliefs regarding probabilities,
the elicitation and quantification of utilities is challeng-
ing, and this is one of the least developed areas of
bayesian analysis. Such formal uses of decision theory
have been applied in health technology assessments in
various settings, including the development of clinical
recommendations for prevention of stroke,27 monitor-
ing and analysis in randomised trials,11 and assessment
of environmental contamination on public health.28

Recommendations
Bayesian analysis is widely used in a variety of non-
medical fields, including engineering, image processing,
expert systems, decision analysis, gene sequencing,
financial predictions, and neural networks, and increas-
ingly in complex epidemiological models. Health
technology assessment has been slow to adopt bayesian
methods; this could be due to a reluctance to use prior
opinions, unfamiliarity, mathematical complexity, lack of
software, or conservatism of the health care establish-
ment and, in particular, the regulatory authorities.

There are strong philosophical reasons for using a
bayesian approach, but the current literature empha-
sises the practical advantages in handling complex
interrelated problems and in making explicit and
accountable what is usually implicit and hidden,
thereby clarifying discussions and disagreements.
Perhaps the most persuasive reason is that the analysis
tells us what we want to know: how should this piece of
evidence change what we currently believe?

The perceived problems with the bayesian
approach largely concern the source of the prior and
the interpretations of the conclusions. There are also
practical difficulties in implementation and software.
Current international guidelines for statistical sub-

missions to drug regulatory authorities state that “the
use of bayesian and other approaches may be
considered when the reasons for their use are clear and
when the resulting conclusions are sufficiently
robust,”29 and it seems sensible that experience should
be gained in the use of bayesian approaches in health
technology assessment in parallel with traditional
approaches, with careful consideration of the sensitiv-
ity of results to prior distributions.

For future practical and methodological develop-
ments, we recommend:
x An extended set of case studies showing practical
aspects of the bayesian approach, in particular for pre-
diction and handling multiple substudies, in which
mathematical details are minimised;
x The development of standards for the performance
and reporting of bayesian analyses;
x The development and dissemination of software for
bayesian analysis, preferably as part of existing
programs.

This article is adapted from Health Services Research Methods: A
Guide to Best Practice, edited by Nick Black, John Brazier, Ray
Fitzpatrick, and Barnaby Reeves, published by BMJ Books.
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Bayes’s theorem for subset analysis

Dixon and Simon describe a bayesian approach to dealing with subset
analysis in a randomised trial in advanced colorectal cancer.23 The solid
horizontal lines in figure 3 show the standardised treatment effects within a
range of subgroups, using traditional methods for estimating treatment by
subgroup interactions. Four of the 12 intervals exclude zero; because
multiple hypotheses are being tested, however, an adjustment technique
such as Bonferroni might be used to decrease the apparent statistical
significance of these findings.

The bayesian approach is to assume that deviations from the overall
treatment effect that are specific to subgroups have a prior distribution
centred at zero but with an unknown variability; this variability is then given
its own prior distribution. Since the degree of scepticism is governed by the
variance of the prior distribution, the observed heterogeneity of treatment
effects between subgroups will influence the degree of scepticism being
imposed.

The resulting bayesian estimates are shown as dashed lines in figure 3.
They tend to be pulled towards each other, owing to the prior scepticism
about substantial interaction effects between subgroups and treatments.
Only one 95% confidence interval now excludes zero, that for the subgroup
with no measurable metastatic disease. Dixon and Simon mention that this
was the conclusion of the original trial; the bayesian analysis has the
advantage of not relying on somewhat arbitrary adjustment techniques as it
can be generalised to any number of subsets, and it provides a unified
means of both providing estimates and tests of hypotheses.
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Appendix
Material for patients
x Patient information booklet: “Understanding High
Blood Pressure”
x Fact sheets:

Selfhelp measures
Antihypertensive drugs

Blood pressure measurement
Reducing dietary salt
Blood pressure and kidney disease

x Diet sheet: “Healthy Eating”
Available from the British Hypertension Society Infor-
mation Service, Blood Pressure Unit, St George’s Hos-
pital Medical School, Cranmer Terrace, London SW17
0RE (tel: 0181 725 3412; fax: 0181 725 2959;
www.bhsinfo.hyp.ac.uk (for information service);
website: www.bhs.hyp.ac.uk)

Material for doctors
x Blood Pressure Measurement—Recommendations of the
British Hypertension Society. 3rd edition, 1997. (Edited by
E O’Brien et al; price £4.95.)
x BHS/BMJ. Recommendations for Blood Pressure
Measurement. CD Rom, price £58.75.
Available from BMJ Publications or the BMJ Book-
shop, BMA House, London WC1H 9JR (tel: 0171 383
6244; fax: 0171 383 6455; orders@bmjbookshop.com).
x The Joint British Societies’ Cardiac Risk Assessor
computer program and copies of the Joint British
Societies coronary heart disease risk assessment chart
can be downloaded from the British Hypertension
Society website (www.bhs.hyp.ac.uk).

Methods in health service research
Handling uncertainty in economic evaluations of
healthcare interventions
Andrew H Briggs, Alastair M Gray

The constant introduction of new health technologies,
coupled with limited healthcare resources, has
engendered a growing interest in economic evaluation
as a way of guiding decision makers towards interven-
tions that are likely to offer maximum health gain. In
particular, cost effectiveness analyses—which compare
interventions in terms of the extra or incremental cost
per unit of health outcome obtained—have become
increasingly familiar in many medical and health serv-
ice journals.

Considerable uncertainty exists in regard to valid
economic evaluations. Firstly, several aspects of the
underlying methodological framework are still being
debated among health economists. Secondly, there is
often considerable uncertainty surrounding the data,
the assumptions that may have been used, and how to
handle and express this uncertainty. In the absence of
data at the patient level sensitivity analysis is commonly
used; however, a number of alternative methods of
sensitivity analysis exist, with different implications for
the interval estimates generated (see box). Finally, there
is a substantial amount of subjectivity in presenting
and interpreting the results of economic evaluations.

The aim of this paper is to give an overview of
the handling of uncertainty in economic evaluations
of healthcare interventions.3 It examines how ana-
lysts have handled uncertainty in economic evalua-

tion, assembled data on the distribution and variance
of healthcare costs, and proposed guidelines to
improve current practice. It is intended as a con-
tribution towards the development of agreed guide-
lines for analysts, reviewers, editors, and decision
makers.4-7

Summary points

Economic evaluations are beset by uncertainty
concerning methodology and data

A review of 492 articles published up to
December 1996 found that a fifth did not attempt
any analysis to examine uncertainty

Only 5% of these studies reported some measure
of cost variance

Closer adherence to published guidelines would
greatly improve the current position

Use of a methodological reference case will
improve comparability
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Nature of the evidence
A structured review examined the methods used to
handle uncertainty in the empirical literature, and this
was supplemented by a review of methodological arti-
cles on the specific topic of confidence interval estima-
tion for cost effectiveness ratios. The first step in the
empirical review was a search of the literature to iden-
tify published economic evaluations that reported
results in terms of cost per life year or cost per quality
adjusted life year (QALY). This form of study was cho-
sen as the results of these studies are commonly
considered to be sufficiently comparable to be grouped
together and reported in cost effectiveness league
tables.

Searches were conducted for all such studies
published up to the end of 1996 using Medline,
CINAHL, Econlit, Embase, the Social Science Citation
Index, and the economic evaluation databases of the
Centre for Reviews and Dissemination at York Univer-
sity and the Office of Health Economics and
International Federation of Pharmaceutical Manufac-
turers’ Association. Articles identified as meeting the
search criteria were reviewed by using a form designed
to collect summary information on each study, includ-
ing the disease area, type of intervention, nature of the
data, nature of the results, study design, and the meth-
ods used to handle uncertainty. This information was
entered as keywords into a database to allow interroga-
tion and cross referencing of the database by category.

This overall dataset was then used to focus on two
specific areas of interest, using subsets of articles to
perform more detailed reviews. Firstly, all British stud-
ies were identified and reviewed in detail, and

information on the baseline results, the methods
underlying those results, the range of results represent-
ing uncertainty, and the number of previously
published results quoted for purposes of comparison
were entered on to a relational database. By matching
results by the methods used in a retrospective applica-
tion of a methodological “reference case” (box),5 a sub-
set of results with improved comparability was
identified, and a rank ordering of these results was then
attempted. Where a range of values accompanied the
baseline results, the implications of this uncertainty for
the rank ordering was also examined.

Secondly, all studies that reported cost data at the
patient level were identified and reviewed in detail with
respect to how they had reported the distribution and
variance of healthcare costs. Thirdly, and in parallel
with the structured review, five datasets of patient level
cost data were obtained and examined to show how the
healthcare costs in those data were distributed and to
elucidate issues surrounding the analysis and presenta-
tion of differences in healthcare cost.

Economic analyses are not simply concerned with
costs, but also with effects, with the incremental cost
effectiveness ratio being the outcome of interest in
most economic evaluations. Unfortunately, ratio statis-
tics pose particular problems for standard statistical
methods. The review examines a number of proposed
methods that have appeared in the recent literature for
estimating confidence limits for cost effectiveness ratios
(when patient level data are available).

Findings
Trends in economic evaluations
A total of 492 articles published up to December 1996
were found to match the search criteria and were fully
reviewed. The review found an exponential rate of
increase in published economic evaluations over time
and an increasing proportion reporting cost per
QALY results. Analysis of the articles in terms of the
method used by analysts to handle uncertainty shows
that the vast majority of studies (just over 70%) used
one way sensitivity analysis methods to quantify uncer-
tainty (see box 1). Of some concern is that almost 20%
of studies did not attempt any analysis to examine
uncertainty, although there is weak evidence to show
that this situation has improved over time.

Box 1: Sensitivity analysis

Sensitivity analysis involves systematically examining
the influence of uncertainties in the variables and
assumptions employed in an evaluation on the
estimated results. It encompasses at least three
alternative approaches.1

• One way sensitivity analysis systematically examines
the impact of each variable in the study by varying it
across a plausible range of values while holding all
other variables in the analysis constant at their “best
estimate” or baseline value.
• Extreme scenario analysis involves setting each
variable to simultaneously take the most optimistic
(pessimistic) value from the point of view of the
intervention under evaluation in order to generate a
best (worst) case scenario.

Of course, in real life the components of an
evaluation do not vary in isolation nor are they
perfectly correlated, hence it is likely that one way
sensitivity analysis will underestimate, and extreme
scenario analysis overestimate, the uncertainty
associated with the results of economic evaluation.
• Probabilistic sensitivity analysis, which is based on a
large number of Monte Carlo simulations, examines
the effect on the results of an evaluation when the
underlying variables are allowed to vary
simultaneously across a plausible range according to
predefined distributions. These probabilistic analyses
are likely to produce results that lie between the
ranges implied by one way sensitivity analysis and
extreme scenario analysis, and therefore may produce
a more realistic estimate of uncertainty.2

The “reference case”

The Panel on Cost-Effectiveness in Health and
Medicine, an expert committee convened by the US
Public Health Service in 1993, proposed that all
published cost effectiveness studies contain at least one
set of results based on a standardised act of methods
and conventions—a reference case analysis—which
would aid comparability between studies. The features
of this reference case were set out in detail in the
panel’s report.5

The current review used this concept retrospectively,
selecting for comparison a subset of results which
conformed to the following conditions:
• An incremental analysis was undertaken;
• A health service perspective was employed; and
• Both costs and health outcomes were discounted at
the UK Treasury approved rate of 6% per annum.
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Handling of uncertainty
Of the 492 studies, 60 reported results for the United
Kingdom. From these, 548 baseline results were
extracted for different subgroups. The importance of
separate baselines for different subgroups of patients is
shown in the results of an evaluation of an implantable
cardioverter defibrillator where the average cost per
life year saved across the whole patient group—
£57 000—masks important differences between
patients with different clinical characteristics.8 For
patients with a low ejection fraction and inducible
arrhythmia that is not controlled by drugs, the cost
effectiveness of the device is £22 000 per year of life
saved. By contrast, the use of the device in patients with
high ejection fraction and inducible arrhythmia that is
controlled by drugs is associated with an incremental
cost effectiveness of around £700 000 per year of life
saved.

The 548 baseline results used no fewer than 106
different methodological scenarios, and consequently
a “reference case” methodological scenario was
applied retrospectively to each article; this resulted in a
total of 333 methodologically comparable baseline
results. These results were converted to a common cost
base year and ranked to give a comprehensive “league
table” of results for the United Kingdom. Of the 333
results, 61 reported an associated range of high and
low values to represent uncertainty. Alternative
rankings based on the high or low values from this
range showed that there could be considerable disrup-
tion to the ranked order based on the baseline point
estimates only. This is illustrated by figure 1, which
shows the rank ordering of these 61 results by their
baseline values and by the highest value from their
range. This analysis of UK studies reporting the ranges
of sensitivity analyses raises the further concern that
the median number of variables included in the sensi-
tivity analysis was just two. Therefore, the ranges of

values shown in figure 1 are likely to be less than if a
comprehensive analysis of all uncertain variables had
been conducted. Clearly, this would further increase
the potential for the rank order to vary depending on
the value chosen from the overall range.

Cost data at patient level
Of the 492 studies on the database, only 53 had patient
level cost data and just 25 of these reported some
measure of cost variance. Eleven reported only ranges,
which are of limited usefulness in quantifying variance.
Five articles gave a standard error, seven a standard
deviation, and only four studies ( < 1%) had calculated
95% confidence intervals for cost.

In the five datasets of cost at the patient level, analy-
sis indicated that many cost data were substantially
skewed in their distribution. This may cause problems
for parametric statistical tests for the equality of two
means. One method for dealing with this is to
transform the data to an alternative scale of
measurement—for example by means of log, square
root, or reciprocal transformations. However, our
analysis of these data indicated that although a
transformation may modestly improve the statistical
significance of observed cost differences or may reduce
the sample size requirements to detect a specified
difference, it is difficult to give the results of a
transformed or back transformed scale a meaningful
economic interpretation, especially if we intend to use
the cost information as part of a cost effectiveness ratio.
It would be appropriate to use non-parametric
bootstrapping to test whether the sample size of a
study’s cost data is sufficient for the central limit
theorem to hold, and to base analyses on mean values
from untransformed data.

Estimating confidence intervals for cost
effectiveness ratios
Finally, our review identified a number of different
methods for estimating confidence intervals for cost
effectiveness ratios that have appeared in the recent
literature,9-14 and we applied each of these methods to
one of the five datasets listed above.15 These different
methods produced very different intervals. Examina-
tion of their statistical properties and evidence from
recent Monte Carlo simulation studies14 16 suggests that
many of these methods may not perform well in some
circumstances. The parametric method based on
Fieller’s theorem and the non-parametric approach of
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Initial cost effectiveness and cost utility studies: 368

Studies reporting patient-level cost data: 41

Studies reporting some measure of cost variance: 20

Standard
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Fig 2 The handling of cost variance by studies reporting patient level
cost data
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bootstrapping have been shown to produce consist-
ently the best results in terms of the number of times,
in repeated sampling, the true population parameter is
contained within the interval.14 16

Recommendations
Uncertainty in economic evaluation is often handled
inconsistently and unsatisfactorily. Recently published
guidelines should improve this situation, but we
emphasise the following:
x Ensure that the potential implications of uncer-
tainty for the results are considered in all analyses;
x When reporting cost and cost effectiveness infor-
mation, make more use of descriptive statistics. Interval
estimates should accompany each point estimate
presented;
x Sensitivity analyses should be comprehensive in
their inclusion of all variables;
x Cost and cost effectiveness data are often skewed.
Significance tests may be more powerful on a
transformed scale, but confidence interval should be
reported on the original scale. Even when data are
skewed, economic analyses should be based on means
of distributions;
x Where patient level data on both cost and effect are
available, the parametric approach based on Fieller’s
theorem or the non-parametric approach of boot-
strapping should be used to estimate a confidence
interval for the cost effectiveness ratio;
x When comparing results between studies, ensure
that they are representative;
x Using a methodological reference case when
presenting results will increase the comparability of
results between studies.

This article is adapted from Health Services Research Methods:
A Guide to Best Practice, edited by Nick Black, John Brazier, Ray
Fitzpatrick, and Barnaby Reeves, published by BMJ Books.
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How the defibrillator saved a patient’s life

Initially it was quite a struggle just getting the partners to agree
that purchasing a defibrillator would benefit the practice. We did
not even have to pay as the Friends of the Health Centre kindly
raised the money.

The equipment was installed in the nurses’ treatment room and
gradually gathered dust. “Does the defibrillator work?” and “I bet
the batteries aren’t charged” were some of the jocular comments
from the partners.

We had a couple of attempts at resuscitation, the equipment
worked well, but unfortunately the patient did not survive. It was
decided to hold a training day on resuscitation for the nurses. The
alarms sounded, I rushed to the treatment room only to find that
it was a mock emergency.

In the middle of a busy afternoon surgery the same day the
alarm went off again and there was an urgent telephone call. When
I arrived several partners and nursing staff were in the middle of
full cardiopulmonary resuscitation. The patient had been sent
down from the doctor’s surgery to the treatment room for an
electrocardiogram as he had chest pain and had collapsed. The
tracing showed ventricular fibrillation. Bring out the defibrillator!
Charge to 200 deliver shock! It’s just like ER! Unfortunately, the
patient was unstable; there were further episodes of ventricular
fibrillation and further defibrillation. As a former medical registrar
it started to flood back. We need lignocaine, but what is the dose? It
was like the blind leading the blind.

Four cardioversions later the ambulance arrived. Was he stable
enough to transfer to our local hospital? It was decided that I
should accompany the patient in the ambulance; this was just as
well as he had two further arrests in the ambulance requiring
defibrillation. An emergency stop as a bus pulled out in front of
us hurled the patient forward into my lap. But he survived, and as
he was only 40 with two children he was eternally grateful.

What have we learnt? Clearly, we need more training in
resuscitation. We now have a very persuasive argument for the
partner who said that we did not need a defibrillator as the
ambulance always carries one. Our Friends of the Health Centre
are now saving to buy us a better model that can record the
cardiac rhythm through the paddles.

Alexander Williams, general practitioner, Exeter

We welcome articles up to 600 words on topics such as A
memorable patient, A paper that changed my practice, My most
unfortunate mistake, or any other piece conveying instruction,
pathos, or humour. If possible the article should be supplied on a
disk. Permission is needed from the patient or a relative if an
identifiable patient is referred to. We also welcome contributions
for “Endpieces,” consisting of quotations of up to 80 words (but
most are considerably shorter) from any source, ancient or
modern, which have appealed to the reader.

Education and debate

638 BMJ VOLUME 319 4 SEPTEMBER 1999 www.bmj.com


	Methods in health services research
	Interpreting the evidence: choosing between randomised and non-randomised studies
	Evaluation of health interventions at area and organisation level
	An introduction to bayesian methods in health technology assessment
	Handling uncertainty in economic evaluations of healthcare interventions

